- Advertisement -spot_imgspot_img

Genetic treatment makes skin cells up to 40 years younger

Aging is the gradual decline in cell and tissue function over time. It is characterizedTrusted Source by various factors, including telomere attrition, genetic instability, and misfolded proteins.

The progression of some age-related changes can be measured and used to predict ageTrusted Source in humans.

Induced pluripotent stem cell (iPSC)Trusted Source reprogramming is a process in which any cell can be converted into an embryonic stem cell-like state. Embryonic stem cells can be made into any cell. iPSC can thus reverse age-associated changes, including telomere attrition and oxidative stress.

An early form of the technique was famously used on “Dolly” the sheep, the first mammal cloned from an adult somatic cell in 1996.

iPSC reprogramming, however, results in a loss of original cell identity and function. Research suggests that short-term iPSC approaches may preserve cell identity and reverseTrusted Source age-related changes in mice.

Understanding whether a partial iPSC reprogramming approach could rejuvenate human cells could help researchers develop new treatments for age-related conditions, including heart disease, diabetes, and neurological disorders.

Researchers applied a partial iPSC technique to middle-aged skin cells in a recent study.

According to molecular measures, they found that the cells became up to 40 years younger, including DNA methylation clocks and transcriptomes.

“We have shown that using this technique, we can, in the lab, rejuvenate cells,” Ines Milagre, Ph.D., from the Instituto Gulbenkian de Ciencia, Portugal, one of the study’s authors, told Medical News Today.

“These cells seem to be more like younger cells, at least partially, in the functions we tested, such as collagen production and in wound healing assays,” she added.

“Here the authors claim that if they try to make iPSCs from skin, but stop the process partway along the way, they get skin cells with properties similar to skin cells from much younger people,” David J. Cutler, Ph.D., professor of human genetics at Emory University School of Medicine, who was not involved in the study, told MNT.

“Such an astonishing claim requires far more evidence than presented here,” he added.

The study was published in eLife.

- Advertisement -spot_imgspot_img

Get in Touch


Please enter your comment!
Please enter your name here

Related Articles

- Advertisement -spot_imgspot_img

Latest Posts